Teacher Wong_Subject __Algebra 1 Dates_5/18-5/22 (Week 5) 7-12 Weekly Planner Welcome to our Distance Learning Classroom! Student Time Expectation per day: 30 minutes

Content Area \& Materials	Learning Objectives	Tasks	Check-in Opportunities	Submission of Work for Grades
Digital	Suggested Order / Pacing Review - Comparing Features of Quadratic Functions (Monday) - Intro to Parabola Transformations (Tuesday) - Scale and Reflect Parabolas (Wednesday) - Quadratic Functions \& Equations Quiz 5 (Thursday) - Reflection (Friday)	- Students are to complete the assigned Khan Academy assignments. - After completing the Khan Academy assignments, please complete the summary assignment.	Mrs. Wong is available during the office hours indicated below. You can reach Mrs. Wong during these office hours via: - Zoom link provided in Edmodo - Email cwong@tusd.net	- KA assignments will be recorded with the highest scores attained - Submit the reflection through a picture via Edmodo
(If you can work digitally, please do. It will help to keep us all safe (:)				
- Khan Academy (KA) Access Code on Edmodo				

Hard Copy (Please only use this if you do not have technology available)

- Notes + Examples

Suggested Order / Pacing

 Review- Comparing Features of Quadratic Functions (Monday)
- Intro to Parabola Transformations (Tuesday)
- Scale and Reflect Parabolas (Wednesday)
- Quadratic Functions \& Equations Quiz 5 (Thursday)
- Reflection (Friday)
- Students are to read the lesson and examples provided
- On a separate sheet of paper for each assignment, complete ALL problems showing your work.

Mrs. Wong is available during the office hours indicated below. You can reach Mrs. Wong during these office hours via:

- Zoom link provided in Edmodo
- Email cwong@tusd.net
- Group your work together for your math class IN ORDER, and with the following labels clearly displayed:

Student Name:
Teacher Name:
Class Name/Subject: Period:
Assignment Week \#

- Assignments will be scored on accuracy.

Scheduled, if possible,

- Discussion

Zoom classes will be held on Tuesdays and Thursdays for 30 minutes, followed by 30 minutes of office hours.
Schedule meetings during office hours by emailing me.
Discussions will revolve around discovery and application of concepts assigned for the week.
KA assignments can often be re-tried to improve learning.
Videos are utilized to demonstrate not only key concepts, but also frequent points of errors, helping students avoid pitfalls.

Teacher Office Hours

2 hours daily (all classes):

- Contact
- Platform

Monday

10AM-12PM

Tuesday
1PM Alg. 1
(30 min) followed by Q\&A

Wednesday
10AM-12PM

Thursday
1PM Alg. 1
(30 min) followed by Q\&A

Friday
10AM-12PM

Student Name:
Teacher Name: Wong
Class Name/Subject:
Algebra 1
Period:
Assignment Week \#: 5

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Monday

Tuesday

Finding the vertex when the quadratic is in vertex form is always the easiest.

Finding the vertex when the quadratic is in standard form requires a few extra steps.
\qquad

Which function has a greater maximum?

$$
f(x)=-3(x-8)^{2}+6
$$

We can see that the vertex of g is at $(-7,7)$. Since it's open down, the vertex is a maximum point.

So the maximum value of g is 7 .
f is given in vertex form:
$f(x)=-3(x-8)^{2}+6$
This means its vertex is at $(8,6)$.
Since $-3<0, f$ is also concave down, which means its vertex is its maximum.
So the maximum value of f is 6 .
f has a maximum of 6 , while g has a maximum of 7 .
Therefore, g has a greater maximum than f.

Graphing Parabolas in Vertex Form 	

* Writing an equation from a graph: $\quad y=a(x-h)^{2}+k$
(1) Find the vertex $\rightarrow(h, k)$
(2) Check the pattern for stretches or shrinks $\rightarrow a$
ex: If parabola is flipped over the x-axis \rightarrow make a negative.
(3) Writing an equation given the vertex $\&$ one other point:
\# Use the equation: $y=a(x-h)^{2}+k$

1. The standard form of a quadratic equation is $y=a x^{2}+b x+c$ 2. The curve formed by a quadratic equation is called a parabola 3. The formula for the axis of symmetry is $x=\frac{-b}{2 a}$
2. If the vertex is the highest point on the graph, it is called a maximum \qquad
3. If a vertex is the lowest point on a graph, it is called a minimum

Directions: Find the axis of symmetry and vertex for the following quadratic equations. Then, sketch the parabola and label all parts.
6. $y=x^{2}+6 x+4$
$x=\frac{-(6)}{2(1)}=\frac{-6}{2}=-3$
Axis of Symmetry: $X=-3$
Vertex: $(-3,-5)$
$y=(-3)^{2}+6(-3)+4$
$=9-18+4=-5$
Sketch:

There are multiple ways of identifying the vertex.

It depends on the form the equation is written in.

Assignment Week \#: 5

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Wednesday

5. $y=-(x+2)^{2}+7$

Axis of Symmetry: $x=-2$

x	y
-4	3
-3	6
-2	7
-1	6
0	3

The quadratic is written in vertex form.

You need at least 5 points to graph.

Given a quadratic equation in vertex form, $f(x)=a(x-h)^{2}+k$:

- h is the horizontal_s shift. it shifts left, - shifts right)
- k is the Vertical shift. I+ shifts \qquad - shifts down_1
- If a is negative, the function is reflected across the X-axis
- $|a|>1$ represents a vertical Stre teh
- $0<|a|<1$ represents a vertical compression.

15. translated 3 units left and 4 units down

$$
y=(x+3)^{2}-4
$$

17. reflected over the x-axis, then translated 3 units down

$$
y=-x^{2}-3
$$

19. vertically compressed by a factor of $1 / 3$, then translated 8 units up

$$
y=\frac{1}{3} x^{2}+8
$$

2. $y=x^{2}+2 x-3 \quad \mathrm{X}=\frac{-2}{2(1)}=-1$

x	y
-4	5
-3	0
-2	-3
-1	-4
0	-3
1	0
2	5

Remember all graphs need at least 5 points.

First identity the vertex, then plot two points to the right and two points to the left of the vertex.

Transformations will shift a function.

It is important you understand what the transformation will do to a function.

Solutions: $X=\{-3,1\}$

Student Name: Teacher Name: Wong Class Name/Subject: Algebra 1 Period: Assignment Week \#: 5	Do these assignm ONLY if you do have digital ac
1.) Which function has a greater yintercept? $f(x)=2 x^{2}-6 x+4$	
3.) Do the functions have the same concavity? How do you know? $f(x)=2 x^{2}-10 x-30$	

1.) The parabola $y=x^{2}$ is shifted up by 2 units and to the rights by 3 units.

What is the equation of the new parabola?
2.) The parabola $y=x^{2}$ is shifted down by 6 units and to the rights by 5 units.

What is the equation of the new parabola?
3.) The parabola $y=x^{2}$ is shifted down by 4 units.

What is the equation of the new parabola?
4.) The parabola $y=x^{2}$ is shifted to the left by 8 units.

What is the equation of the new parabola?
2.) How many roots do

5.)

$$
\begin{gathered}
f(x)=x^{2} \\
g(x)=(x+3)^{2}+5
\end{gathered}
$$

We can think of g as a translated (shifted) version of f.
Describe the transformation.
$f(x)=x^{2}-8 x+16$
3.) Which function has a greater minimum?

$$
f(x)=2(x-3)^{2}+4
$$

6.)

$$
\begin{gathered}
f(x)=x^{2} \\
g(x)=(x-9)^{2}+2
\end{gathered}
$$

We can think of g as a translated (shifted) version of f .
Describe the transformation.
4.) Which function has a greater maximum?

$$
f(x)=-2(x+4)^{2}
$$

7.) Function g can be thought of as a translated (shifted) version of $f(x)=x^{2}$.

Write the equation for $g(x)$.
1.) The parabola $y=x^{2}$ is reflected across the x axis and then scaled vertically by a factor of 5.

What is the equation of the new parabola?
7.) The parabola $y=x^{2}$ is reflected across the x axis and then scaled vertically by a factor of $\frac{4}{3}$ What is the equation of the new parabola?
8.) The parabola $y=x^{2}$ is scaled vertically by a factor of $1 / 10$.

What is the equation of the new parabola?
9.) Function g can be thought of as a scaled version of $f(x)=x^{2}$.

Write the equation for $g(x)$.

10.) Function g can be thought of as a scaled version of $f(x)=x^{2}$.

Write the equation for $g(x)$.

11.) Describe the difference between the graphs

$$
\begin{gathered}
g(x)=3 x^{2} \\
f(x)=-3 x^{2} \\
h(x)=\frac{1}{3} x^{2}
\end{gathered}
$$

Quiz \#5
1.) The parabola $y=x^{2}$ is shifted up by 4 units. What is the equation of the new parabola?
2.) Which function has a greater y intercept?

$$
f(x)=6 x^{2}+18 x+3
$$

3.) The function f is given in three equivalent forms. Which form most quickly reveals the y-intercept? What is the y-intercept?
a.) $f(x)=\frac{1}{2}(x-3)(x-7)$
b.) $\frac{1}{2}(x-5)^{2}-2$
c.) $f(x)=\frac{1}{2} x^{2}-5 x+\frac{21}{2}$
4.) The parabola $y=x^{2}$ is scaled vertically by a factor of 7. What is the equation of the new parabola?
5.) Graph the function $f(x)=-(x-2)(x-6)$
6.) What are the zeros of the function?

$$
g(x)=(2 x+11)(x+14)
$$

Reflection:

What are you learning about yourself as a result of the coronavirus-related shifts in your life? How have you come to learn these things?
What are you learning about other people (both close others and not-so-close others) as a result of our present situation? How have you come to learn these things?

How may you integrate this new learning and related perspectives gained into your life moving forward?

