

Student Name:
Teacher Name: De La Mora Class Name/Subject:
Algebra 2
Period:
Assignment Week \#: 1

Monday

Answer exactly, using a simplified radical if needed.

Do not convert to decimals unless the problem starts with a decimal. Round your answer to the nearest hundredth.

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Main Ideas/Questions	Notes
Pythagorean Theorem	- Used to find the missing side of a right - Sides \underline{a} and \underline{b} are called $\frac{\text { legs }}{}$ - Side \underline{c} is called the hyple. - For any right triangle: $\frac{a^{2}+b^{2}=c^{2}}{}$

 4.
19
36 $19.1^{2}+x^{2}=30.5^{2}$
$364.81+x^{2}=930.25$ $x^{2}=565.44$
$x=23.8$

$11^{2}+x^{2}=24^{2}$
$121+x^{2}=576$

$$
\begin{aligned}
& x^{2}=455 \\
& x=21.3
\end{aligned}
$$

Multistep problem. Find the missing side using Pythagorean theorem. Use this information to solve for the needed piece of information.

Tuesday

Answer exactly, using a simplified radical if needed.

Wednesday

Ratios must be exact answers. Do not convert to decimals.

TRIGONOMETRIC			
	SINE	The ratio of the leg opposite the angle to the hypotenuse.	$\begin{aligned} & \cdot \sin A=\frac{a / C}{b} \\ & \cdot \sin B== \end{aligned}$
	COSINE	The ratio of the leg adjacent to the angle to	$\begin{aligned} \cdot \cos A=\frac{b / c}{} \\ \cdot \cos B= \end{aligned}$
$\frac{\square}{a}$	TANGENT	The ratio of the leg opposite the angle to the leg adjacent to the angle.	$\text { - } \operatorname{Tan} A=\frac{a / b}{b \tan B}$
* REMEMBER!! *	SOH CAH TOA		
	Sin $=\frac{o p p}{\text { hyp }}$ cos $=\frac{\text { adj }}{\text { hyp }}$ Tan $=\frac{o p \rho}{\text { adj }}$		

Student Name:

Assignment Week \#: 1

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Label the angle of interest and Adjacent, Opposite and Hypotenuse Side.

Round your answer to the nearest hundredth.

Monday

Find the value of x for each triangle.

In the right triangle shown, 30° and $A B=8$.
How long is $B C$?
exactly, using a radical if needed.

${ }_{3}$
In the right triangle shown,

Find the value of x for each triangle.

2

$$
A C=C B=7 .
$$

How long is $A B$?
Answer exactly, using a radical if needed.

Find the value of x for each isosceles triangle.

x

Find the value of x for each isosceles triangle.

Find the value of x in the isosceles triangle.

In the right triangle shown, $\angle A=30^{\circ}$ and $A B=4 \sqrt{3}$.
How long is AC?
Answer exactly, using a radical if needed.

In the right triangle shown,

$$
\angle A=30^{\circ} \text { and } A C=12 .
$$

How long is $A B$?
Answer exactly, using a radical if needed.

Wednesday

Thursday

Find $\cos (\alpha)$ in the triangle.
B

Find $\tan (\alpha)$ in the triangle.

Round your answer to the nearest hundredth.

Find $\sin (\beta)$ in the triangle.

A
Round your answer
Find $\sin (\alpha)$ in the triangle.

Find $\sin (\alpha)$ in the triangle.

to the nearest hundredth.

AC=
Round your

answer to the
B
nearest
hundredth.

Find $\cos (\beta)$ in the triangle.
$A B=$
Round your answer to the nearest hundredth.

Summary Assignment Week\#1

SHOW YOUR WORK on a separate sheet of paper.

Student Name:	
Teacher Name:	
Subject:	Algebra 2
Period:	
Week:	$\# 1$

Use the Pythagorean Theorem and Trigonometric Ratios to identify the unknown values. Answers for lengths should be exact, using a radical if needed. Answers for angles should be rounded to the nearest hundredth.

