TEACHER: MADARANG
SUBJECT: ALGEBRA 1 WEEK 4 Due May $15^{\text {th }}$
PERIOD: \qquad

WEEK 4: Solving Quadratic Equations Using Square Roots and Graphing Quadratic Functions

Topic 1: Solving by Factoring (REVIEW)

Discussion: For the last two weeks, you have been exposed to factoring quadratic trinomials and solving for the quadratic equation by factoring.

Let's review: Solve the quadratic equations by factoring:

Example 1: $x^{2}-5 x-14=0 \rightarrow$ what is our magic pair?

Since: $(-7)(2)=-14$ and $-7+2=-5$, then our magic pair is -7 and 5.

$$
\text { trinomial }(x-7)(x+2)=0 \rightarrow \text { factoring the }
$$

$$
(-7)(2)=-14 \text { and }-7+2=-
$$

5

$$
\begin{aligned}
& \qquad \begin{array}{rr}
x-7=0 & x+2=0 \\
+7 & \rightarrow 7
\end{array} \\
& \text { variable }
\end{aligned}
$$

$$
x=7 \quad x=-2 \rightarrow \text { solution }
$$

Example 2: $2 x^{2}+7 x-15=0$
To find the magic pair, we have to multiply 2 and 15 , so $2 \cdot(-15)=-30$. Since $10(-3)=-30$ and $10+$ $-3=7$, then our magic pair is 10 and -3 . Our equation becomes:
$2 x^{2}+10 x-3 x-15=0 \rightarrow$ split the middle
$\left(2 x^{2}+10 x\right)-(3 x+15)=0 \rightarrow$ grouping
$2 x(x+5)-3(x+5)=0 \rightarrow$ factoring 1 $(x+5)(2 x-3)=0 \rightarrow$ factoring 2
$x+5=0$ and $2 x-3=0$
$x=-5 \quad \begin{array}{r}2 x=3 \\ x=\frac{3}{2}\end{array}$

Solve each equation by tactoring. SHOW Y OUR WORK!!!

1) $x^{2}-12 x+35=0$
2) $x^{2}+6 x+5=0$
3) $x^{2}+3 x-40=0$
4) $x^{2}+x-6=0$
5) $5 x^{2}-11 x+6=0$
6) $5 x^{2}+37 x+14=0$
7) $5 x^{2}+41 x+8=0$
8) $5 x^{2}-2 x-16=0$
\qquad

Topic 2A: Solving Quadratic Equations by Taking Square Roots

Example 3: Solve by taking the square roots	
$4 x^{2}-1=15$	\rightarrow given
$4 x^{2}=16 \rightarrow$ simplify/combine like terms	
$\underline{4 x^{2}}=16$	
$x^{2}=4 \quad \rightarrow$ simplify the fractions	
$\sqrt{x^{2}}= \pm \sqrt{4}$	\rightarrow get the square root
$x= \pm 2$	\rightarrow simplify the radicals
$=2 \text { and } x=-$	\rightarrow separate the positive

Example 4:

Solve by taking the square roots:

$$
25 x^{2}-2=7 \quad \rightarrow \text { given }
$$

$$
25 x^{2}-2+2=7+2 \rightarrow \text { add } 2 \text { on both sides of the eq }
$$

$$
25 x^{2}=9 \quad \rightarrow \text { simplify }
$$

$$
\frac{25 x^{2}}{25}=\frac{9}{25} \quad \rightarrow \text { divide both sides by } 25
$$

$$
x^{2}=\frac{9}{25} \quad \rightarrow \text { simplify } \frac{25}{25}
$$

$$
\sqrt{x^{2}}= \pm \sqrt{\frac{9}{25}} \rightarrow \text { get the square root }
$$

of both sides
$x=\frac{3}{5}$ and $x=-\frac{3}{5} \rightarrow$ simplify radicals

Solve each equation by taking square roots. SHOW ALL THE STEPS!!
9) $9 x^{2}-9=0$
10) $9 x^{2}+6=735$
11) $4 x^{2}-6=394$
12) $-8+81 x^{2}=56$
13) $36 x^{2}+4=40$
14) $64 x^{2}+10=19$
15) $100 x^{2}+3=7$
16) $9 x^{2}-6=19$
17) $9 x^{2}+9=450$
18) $8 x^{2}-8=64$
\qquad
Topic 2B: Solving Quadratic Equations by Taking Square Roots in a Quantity

Example 5:
Solve by taking the square roots

$$
\begin{aligned}
(x-2)^{2} & =25
\end{aligned} \rightarrow \text { given } \quad \begin{aligned}
\sqrt{(x-2)^{2}} & = \pm \sqrt{25} \\
x-2 & \rightarrow \text { get the square root of both sides } \\
x & \rightarrow \text { simplify the radicals }
\end{aligned}
$$

Separate the two answers +5 and -5 as two linear equations

$$
\begin{aligned}
x-2 & =5 & \text { and } & x-2
\end{aligned}=-59
$$

\rightarrow solve for x by adding 2 to both sides of the equation for BOTH equations

\rightarrow simplifying by combining like terms

Example 6:
Solve by taking the square roots

$$
\begin{array}{rlrl}
2(x-5)^{2}+1 & =9 & & \text { given } \\
2(x-5)^{2}+1-1 & =9-1 & \rightarrow \text { add } 1 \text { to both sides } \\
2(x-5)^{2} & =8 & & \rightarrow \text { simplify by combining } \\
& & \text { like terms } \\
\frac{2(x-5)^{2}}{2} & =\frac{8}{2} & & \rightarrow \text { divide by } 2 \text { on } \\
& & \text { both sides }
\end{array}
$$

Now you have isolated the quadratic expression.

$$
\left.\begin{array}{rlrl}
(x-5)^{2} & =4 & & \\
\sqrt{(x-5)^{2}} & = \pm \sqrt{4} & & \rightarrow \text { get the square root } \\
\text { of both sides }
\end{array}\right] \text { (x-5)}= \pm 2 \quad \rightarrow \text { simplify the radicals }
$$

$$
(x-5)=2 \quad \text { and } \quad(x-5)=-2
$$

$$
\rightarrow \text { separate the two answers, then solve for } x
$$

$$
x-5+5=2+5 \quad x-5+5=-2+5
$$

$$
x=7
$$

$$
x=3
$$

Solve each equation by taking the square roots. SHOW ALL THE STEPS!!!
19. $(x+5)^{2}-6=43$
20. $(x-1)^{2}-19=81$
21. $(x-14)^{2}+13=12$
22. $2(x-3)^{2}+1=73$
23. $(x-1)^{2}+14=15$
24. $2(x+1)^{2}+5=55$
25. $2(x-1)^{2}-1=49$
26. $5(x-7)^{2}+10=190$
\qquad
Topic 3: Graphing Quadratic Functions
Graph the quadratic function $f(x)=x^{2}+2 x-8$
STEP 1: Make the equation equal to zero and solve by factoring:

\[

\]

These will be your x-intercepts on the graph. Write them as ordered pairs $(-4,0)$ and $(2,0)$

STEP 2: Get the midpoint of -4 and 2 and draw a vertical line through this point.
$\frac{-4+2}{2}=\frac{-2}{2}=-1 \rightarrow$ your line of symmetry is $x=-1$

STEP 3: Substitute $x=-1$ into the equation to find the y-value

$$
\begin{aligned}
f(x) & =x^{2}+2 x-8 \\
y & =x^{2}+2 x-8 \\
y & =(-1)^{2}+2(-1)-8 \\
y & =1-2-8 \\
y & =-9
\end{aligned}
$$

This becomes another point on your graph (-1, -9) We call this your VERTEX.

Step 4: Since you now have 3 points, you can now graph your parabola. Your vertex will be your lowest (or highest point) of your curve, but it should be exactly in between your x-intercepts.

As you can see, your parabola is perfectly symmetrical on both sides of your line of symmetry!
Note: This is not a U-shaped graph.
This is not a V-shaped graph.
It's a parabola! And you graphed it with just 3 points!
(You might want to google what parabolas look like and where you can find them.)

Let's plot the x-intercepts $(-4,0)$ and $(2,0)$

Draw the vertical line $x=-1$ on the graph.

Let's plot the vertex (-1, -9) on the graph.

Let's draw your curve now.

Okay, let's do this! Graph the following quadratic functions. SHOW ALL THE STEPS!

29. Graph: $f(x)=x^{2}-2 x-3$ STEP 1:

STEP 2:

STEP 3:

STEP 4:

28. Graph: $f(x)=x^{2}+6 x+5$ STEP 1:

STEP 2:

STEP 3:

STEP 4:

30. Graph: $f(x)=x^{2}+10 x+16$ STEP 1:

STEP 2:

STEP 3:

STEP 4:

