TEACHER NAME: MADARANG

SUBJECT: ALGEBRA 1

PERIOD: _____

Explain 1 Multiplying Binomials Using the Distributive Property

To multiply a binomial by a binomial, the Distributive Property must be applied more than once.

Example 1 Multiply by using the Distributive Property.

(x + 5)(x + 2)
(x + 5)(x + 2) = x(x + 2) + 5(x + 2) Distribute.
=
$$x(x + 2) + 5(x + 2)$$
 Redistribute and simplify.
= $x(x) + x(2) + 5(x) + 5(2)$
= $x^2 + 2x + 5x + 10$
= $x^2 + 7x + 10$

B
$$(2x+4)(x+3)$$

 $(2x+4)(x+3) = 2x(x+3) + (x+3)$ Distribute.
 $= 2x(x+3) + (x+3)$ Redistribute and simplify.
 $= 2x(x) + (3) + (x) + (3)$
 $= x^{-} + x + x + (x+3)$
 $= x^{-} + (x+3) + (x) +$

Multiply.

1. $(x + 5)(x + 6)$	2. (<i>a</i> – 7)(<i>a</i> – 3)	3. (<i>d</i> + 8)(<i>d</i> - 4)
4. $(2x-3)(x+4)$	5. (5 <i>b</i> + 1)(<i>b</i> - 2)	6. $(3p-2)(2p+3)$
7. (5 <i>k</i> – 9)(2 <i>k</i> – 4)	8. (2 <i>m</i> – 5)(3 <i>m</i> + 8)	9. $(4+7g)(5-8g)$
10. (<i>r</i> + 2 <i>s</i>)(<i>r</i> – 6 <i>s</i>)	11. (3 – 2 <i>v</i>)(2 – 5 <i>v</i>)	12. (5 + <i>h</i>)(5 – <i>h</i>)

Explain 3 Multiplying Polynomials

To multiply polynomials with more than two terms, the Distributive Property must be used several times.

Example 3 Multiply the polynomials. (x + 2) $(x^2 - 5x + 4) = x (x^2 - 5x + 4) + 2(x^2 - 5x + 4)$ Distribute. $= x(x^2 - 5x + 4) + 2(x^2 - 5x + 4)$ Redistribute. $= x(x^2 - 5x + 4) + 2(x^2 - 5x + 4)$ Redistribute. $= x(x^2) + x(-5x) + x(4) + 2(x^2) + 2(-5x) + 2(4)$ Simplify. $= x^3 - 5x^2 + 4x + 2x^2 - 10x + 8$ $= x^3 - 3x^2 - 6x + 8$ (3x - 4) $(-2x^2 + 5x - 6)$ $(3x - 4) (-2x^2 + 5x - 6) = 3x (-2x^2 + 5x - 6) - (-2x^2 + 5x - 6)$ Distribute. $= 3x (-2x^2 + 5x - 6) - (-2x^2 + 5x - 6)$ Redistribute. $= 3x (-2x^2 + 5x - 6) - (-2x^2 + 5x - 6)$ Redistribute. $= 3x (-2x^2) + 3x (-4) + 3x (-4) - 4 (-4) - 4$ Simplify.

 Multiply the polynomials.
 16. $(x-6)(x^5+4x^3+6x^2+2x)$

 13. $(x-3)(x^2+2x+1)$ 16. $(x-6)(x^5+4x^3+6x^2+2x)$

 14. $(x+5)(x^3+6x^2+18x)$ 17. $(x^2+x+3)(x^3-x^2+4)$

 15. $(x+4)(x^4+x^2+1)$ 18. $(x^3+x^2+2x)(x^4-x^3+x^2)$

1)

STEP 1: Separate the polynomial in groups of 2. Use parenthesis to separate them.

STEP 2: Take out the common factor in each group.

STEP 3: Write the binomial that's common to both groups in front, then write the remaining terms as another binomial.

STEP 4: Check your work by multiplying the binomials back. See if you get the original prolem back.

EXAMPLE 1:
$$2x^3 - 6x^2 + 5x - 15 = (2x^3 - 6x^2) + (5x - 15)$$
 STEP 1
= $2x^2(x - 3) + 5(x - 3)$ STEP 2
= $(x - 3)(2x^2 + 5)$ STEP 3
THIS IS YOUR ANSWER.

Check your work: $(x-3)(2x^2+5) = x(2x^2+5) - 3(2x^2+5)$ = $2x^3 + 5x - 6x^2 - 15$ this can also be written in standard form (exponents in descending order) as = $2x^2 - 6x^2 + 5x - 15$ IT'S THE SAME!!

2) EXAMPLE 2:

 $3x^3 + 15x^2 - 2x - 10 = (3x^3 + 15x^2) - (2x + 10)$ ** Notice that the sign for 10 has changed. That's because you placed the negative sign outside the parenthesis. Watch out for this each time you separate terms of a polynomial by grouping.

$$= 3x^{2}(x+5) - 2(x+5)$$
 STEP 2
$$= (x+5)(3x^{2}-2)$$
 STEP 3

Now check by multiplying the binomials and see if you get the original problem back:

 $(x+5)(3x^2-2) = _$

Factor each completely. Show all steps and box your final answer. Remember to check by multiplying the binomials back.

3)
$$15x^3 + 40x^2 + 9x + 24$$

4) $3x^3 + 24x^2 - x - 8$

5)
$$16x^3 + 4x^2 - 12x - 3$$

6) $2x^3 - 6x^2 + x - 3$

7)
$$6x^3 + 15x^2 - 2x - 5$$

8) $18x^3 + 21x^2 - 6x - 7$

9)
$$18x^3 + 6x^2 + 3x + 1$$
 10) $49x^3 - 28x^2 + 35x - 20$

11) $7x^3 + 56x^2 + 6x + 48$ 12) $49x^3 + 28x^2 + 35x + 20$