\qquad WONG__ Subject __Algebra 2_Dates__4/27/20-5/1/20 (Week 2)_ Student Time Expectation per day: 30 minutes

Student Name:
Teacher Name Wong
Subject: Algebra 2
Period:
Assignment Week \#: 2

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Monday

Answer exactly, using a simplified radical if needed.

Do not convert to decimals unless the problem starts with a decimal. Round your answer to the nearest hundredth.

Tuesday

Main Ideas/Questions	Notes		
Angles in Standard Form	- An angle on the coordinate plane is in standard form when the vertex is on the origin and one lay lies on the positive x-axis. - The ray on the x-axis is called the initial side. - The other ray is called the terminal side. - Counterclockwise rotations result in positive _ angle measures. - Clockwise rotations result in negative angle measures. - One full revolution $=360^{\circ}$.		
Drawing Angles	Directions: Sketch an angle with the given measure in standard position.		
	1. 75°	2.	3.
Cotermina Angles	Angles in standard position with the same terminal side are coterminal angles. Give two coterminnal angles for each given angle, one positive and one negative:		
	10.65° $65+360=425^{\circ}$ $65-360=-295^{\circ}$$\quad$$11.540^{\circ}$ $540-360=180^{\circ}$ $180-360=-180^{\circ}$		
$-270 \cdot\left(-\frac{3 \pi}{2}\right)$	$\text { 12. } \begin{aligned} \frac{13 \pi}{18} & \frac{13 \pi}{18}+2 \pi \end{aligned}=\frac{49 \pi}{18}, ~ \begin{aligned} \frac{13 \pi}{18}-2 \pi & =\frac{-23 \pi}{18} \end{aligned}$		$\text { 13. } \begin{aligned} & \frac{14 \pi}{9} \frac{14 \pi}{9}+2 \pi \\ &=\frac{32 \pi}{9} \\ & \frac{14 \pi}{9}-2 \pi=\frac{-4 \pi}{9} \end{aligned}$
Reference	For an angle θ in standard form, the reference angle is the positive acute angle form by the terminal side and the x-axis. Sketch and find the reference angles for each angle:		
			16. $\frac{2 \pi}{3}\left(120^{\circ}\right)$

Answer exactly, using a simplified fractions.

Remember to cross cancel to simplify fractions.

Watch the signs! turn in. Show all work.

Wednesday

Ratios must be exact answers. Do not convert to decimals.

Thursday

Round your answer to the nearest hundredth.

Trig Functions	Let θ be an angle in standard form and $P(x, y)$ be a point on the terminal side of θ. The distance from P to the the origin, r, can be found using the formula: $x^{2}+y^{2}=r^{2}$ (The Pythagorean Theorem).		
	$\sin \theta=\frac{y}{r}$	$\cos \theta=\frac{X}{r}$	$\tan \theta=\frac{y}{x}$
	$\csc \theta=\frac{r}{y}$	$\sec \theta=\frac{r}{x}$	$\cot \theta=\frac{X}{y}$
${\frac{5}{\sqrt{29} 4^{2}}}_{(5,-2)}$	17. $P(5,-2)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :$\begin{array}{cc} 5^{2}+2^{2}=r^{2} & x=5 \\ 25+4=r^{2} & y=-2 \\ 29=r^{2} & r=\sqrt{29} \end{array}$		
	$\sin \theta-\frac{2}{\sqrt{29}}=\frac{-2 \sqrt{29}}{29}$	$\cos \theta=\frac{5}{\sqrt{29}}=\frac{5 \sqrt{29}}{29}$	$\tan \theta=-\frac{2}{5}$
	$\csc \theta=-\frac{\sqrt{29}}{2}$	$\sec \theta=\frac{\sqrt{29}}{5}$	$\cot \theta=-\frac{5}{2}$
$\begin{aligned} & \text { 19. }(-5,12) \\ & 5^{2}+12^{2}=r^{2} \\ & 25+144=r^{2} \\ & 169=r^{2} \\ & 13=r \\ & \\ & x=-5 \\ & y=12 \end{aligned}$		$\sin \theta=\frac{12}{13}$	$\csc \theta=\frac{13}{12}$
		$\cos \theta=\frac{-5}{13}$	$\sec \theta=-\frac{13}{5}$
		$\tan \theta=-\frac{12}{5}$	$\cot \theta=\frac{-5}{12}$
$\begin{aligned} & \text { 20. }(2,8) \\ & 2^{2}+8^{2}=r^{2} \\ & 4+64=r^{2} \\ & 68=r^{2} \\ & 2 \sqrt{17}=r \end{aligned}$	$\begin{aligned} & y \\ & f \end{aligned}(2,8)$	$\sin \theta=\frac{8}{2 \sqrt{17}}=\frac{4 \sqrt{17}}{17}$	$\csc \theta=\frac{2 \sqrt{17}}{8}=\frac{\sqrt{17}}{4}$
	$\int_{2}^{i^{8}} x$	$\cos \theta=\frac{2}{2 \sqrt{17}}=\frac{\sqrt{17}}{17}$	$\sec \theta=\frac{2 \sqrt{17}}{2}=\sqrt{17}$
$\begin{aligned} & x=2 \\ & y=8 \\ & r=2 \sqrt{17} \end{aligned}$	\downarrow	$\tan \theta=\frac{8}{2}=4$	$\cot \theta=\frac{2}{8}=\frac{1}{4}$

Answer exactly, using a simplified fractions.

Label all the sides of the triangle Opposite, Adjacent, and Hypotenuse.

Use Pythagorean theorem to find the missing side.

$\frac{0}{9}=\frac{d d_{0}}{\Gamma p 0}=0100$	$\frac{9}{5}=\frac{1 p 0}{\delta h y}=\theta$ ors	$\frac{v}{\partial}=\frac{\partial d \theta}{\partial h_{y}}=\theta \text { os }$	SNOIIJNH 7VJO४dI)J】
($\frac{\text { OU99 }}{1}$) Inajonvios $^{\text {a }}$	($\left.\frac{\text { O50 }}{\mathrm{I}}\right)$ Invoas	$\left(\frac{o \text { Uus }}{I}\right)$ Invossos	
$\frac{9}{v}=\frac{T P D}{\partial \delta_{0}}=\theta$ upt	$\frac{2}{9}=\frac{d \sqrt{4}}{\sqrt{p 0}}=\theta \text { soo }$	$\frac{\partial}{v}=\frac{\partial h_{u}}{\partial d_{0}}=\theta u s$	SNOIIJNA JI\&IJWONO9IZI
IN3ONY1	3NISO2	3NIS	

It's important you understand how to build it.

Look for patterns. Make sense of how the values are determined.

Find the reference angle for each.

Find the reference angle for each.

Find the reference angle for each.

Find a coterminal angle between 0° and 360°. Not multiple choice, find a cot. angle for each.
a.) -330°
b.) 640°
c.) -435°

Find a coterminal angle between 0° and 360°. Not multiple choice, find a cot. angle for each.
a.) -442°
b.) 285°
c.) -545°

Find a coterminal angle between 0 and 2π. Not multiple choice, find a cot. angle for each.
a.) $\frac{11 \pi}{3}$
b.) $\frac{15 \pi}{4}$
C.) $-\frac{19 \pi}{12}$
d.) $-\frac{35 \pi}{18}$

Convert the angle $\theta=\frac{8 \pi}{9}$ radians to degrees. Express your answer exactly.

Convert the angle $\theta=\frac{19 \pi}{5}$ radians to degrees. Express your answer exactly.

Convert the angle $\theta=310^{\circ}$ to radians. Express your answer exactly.

Convert the angle $\theta=\frac{17 \pi}{18}$ radians to degrees. Express your answer exactly.

Convert the angle $\theta=\frac{257 \pi}{360}$ radians to degrees. Express your answer exactly.

Convert the angle $\theta=35^{\circ}$ to radians. Express your answer exactly.

Convert the angle $\theta=100^{\circ}$ to radians. Express your answer exactly.
$P(5,-2)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

$P(3,2)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

$P(-1,-1)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

$P(-3,6)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

$P(-3,-2)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

The unit circle -

A circle whose center is at $(0,0)$ and whose radius is 1 Any point on the circumference of the circle can be described by an ordered pair (x, y). The coordinates of
B are $(0.6,0.8)$

1.) What are the coordinates of C, D, and E?

$$
\begin{aligned}
& C= \\
& D= \\
& E=
\end{aligned}
$$

2.) In which quadrant are both x and y positive?
3.) In which quadrant is x negative and y positive?
4.) In which quadrant is x positive and y negative?
5.) In which quadrant is x negative and y negative?

Draw an angle of 30° in standard position on the unit circle (see above). Mark the initial ray and the terminal ray, Label it Q. Label the point where the terminal ray meets the circumference as θ.
1.) What are the coordinates of θ ?

Drop a perpendicular from Q to the x-axis to construct a right-angled triangle, centered at $(0,0)$.
2.) What is the length of the hypotenuse?
3.) What is the length of the opposite?
4.) What is the length of the adjacent?

Using trigonometric ratios, (not a calculator), calculate the $\sin 30^{\circ}, \cos 30^{\circ}$ and the tan 30°.
5.) $\sin 30^{\circ}=$ \qquad
6.) $\cos 30^{\circ}=$ \qquad
7.) $\tan 30^{\circ}=$ \qquad
Compare these with the values of the x and y coordinates of Q.
8.) What do you notice about the x and y coordinates of Q and the trigonometric functions $\sin 30^{\circ}, \cos 30^{\circ}$ and tan 30° ?

