Student Time Expectation per day: 30 minutes

Hard Copy (Please only use
this if you do not have
technology available)

- Notes + Examples
- Assignments

Suggested Order / Pacing

- Angles of Rotation/ Reference Angles and Arc Length (Monday)
- Radians/Conversion (Tuesday) Triangle on a Coordinate Plane (Wednesday)
- Building the Unit Circle (Thursday-Friday)
- Students are to read the lesson and examples provided
- On a separate sheet of paper for each assignment, complete ALL problems showing your work.

Mrs. De La Mora is available during the office hours at the times indicated below.

- 12:00-2:00 pm Monday-Friday
- Remind App CODE: 9b69ee
- adelamora@tusd.net
- Group your work together for your math class IN ORDER, and with the following labels clearly displayed:
Student Name:
Teacher Name: Class Name/Subject: Period:
Assignment Week \#
- Assignments will be scored on accuracy.

Scheduled, if possible,

- Discussion

Zoom classes can be held during tutoring hours. Schedule your meetings by visiting the class website: kimballmath.wordpress.com Discussions will revolve around discovery and application of concepts assigned for the week.
Scaffolds \& Supports
KA assignments can often be re-tried to improve learning.
Videos are utilized to demonstrate not only key concepts, but also frequent points of errors, helping students avoid pitfalls.

Teacher Office Hours	pitfalls.	Monday	Tuesday	Wednesday	Thursday
2 hours daily (all classes):	$12: 00-2: 00 \mathrm{pm}$				
- Contact - Platform			$12: 00-2: 00 \mathrm{pm}$		

Student Name:
Teacher Name: De La Mora
Class Name/Subject:
Algebra 2
Period:
Assignment Week \#: 2

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Monday

Answer exactly, using a simplified radical if needed.

Do not convert to decimals unless the problem starts with a decimal. Round your answer to the nearest hundredth.

Main Ideas/Questions	Notes		
Angles in Standard Form	- An angle on the coordinate plane is in standard form when the vertex is on the origin and one lay lies on the positive x-axis. - The ray on the x-axis is called the initial side. - The other ray is called the terminal side. - Counterclockwise rotations result in positive _ angle measures. - Clockwise rotations result in negative angle measures. - One full revolution $=360^{\circ}$.		
Drawing Angles	Directions: Sketch an angle with the given measure in standard position.		
	1. 75°	2.	3.
Coterminal Angles	Angles in standard position with the same terminal side are coterminal angles. Give two coterminnal angles for each given angle, one positive and one negative:		
$\overbrace{-}^{900\left(\frac{\pi}{2}\right)}$	10. 65° $65+360$ $=425^{\circ}$ $65-360$ $=-295^{\circ}$$\quad$11.540 $540-360=180^{\circ}$ $180-360=-180^{\circ}$		
$272 \cdot\left(-\frac{3 \pi}{2}\right)$	$\text { 12. } \begin{aligned} \frac{13 \pi}{18} & \frac{13 \pi}{18}+2 \pi \end{aligned}=\frac{49 \pi}{18}, ~ \frac{13 \pi}{18}-2 \pi=\frac{-23 \pi}{18}$		$\text { 13. } \begin{aligned} \frac{14 \pi}{9} \quad \frac{14 \pi}{9}+2 \pi & =\frac{32 \pi}{9} \\ \frac{14 \pi}{9}-2 \pi & =\frac{-4 \pi}{9} \end{aligned}$
Reference Angles	For an angle θ in standard form, the reference angle is the positive acute angle form by the terminal side and the x-axis. Sketch and find the reference angles for each angle:		
	14. 225° $225-180=45^{\circ}$	15. -310° $-310+360=50^{\circ}$	16. $\frac{2 \pi}{3}\left(120^{\circ}\right)$

rer

Teacher Name: De La Mora Class Name/Subject:
Algebra 2
Period:
Assignment Week \#: 2

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Wednesday

Ratios must be exact answers. Do not convert to decimals.

Trig Functions	Let θ be an angle in standard form and $P(x, y)$ be a point on the terminal sid of 0 . The distance from P to the the origin, r, can be found using the formula: $x^{2}+y^{2}=r^{2}$ (The Pyithagorean Theorem).		
	$\sin \theta=\frac{y}{r}$	$\cos \theta=\frac{X}{r}$	$\tan \theta=\frac{y}{x}$
	$\csc \theta=\frac{r}{y}$	$\sec \theta=\frac{r}{x}$	$\cot \theta=\frac{X}{y}$
$\frac{5}{\substack{\sqrt{\sqrt{29}(5,-2)} \\(5,-2)}} x$	17. $P(5,-2)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :$\begin{array}{cl} 5^{2}+2^{2}=r^{2} & x=5 \\ 25+4=r^{2} & y=-2 \\ 29=r^{2} & r=\sqrt{29} \end{array}$		
	$\sin \theta-\frac{2}{\sqrt{29}}=\frac{-2 \sqrt{29}}{29}$	$\cos \theta=\frac{5}{\sqrt{29}}=\frac{5 \sqrt{29}}{29}$	$\tan \theta=-\frac{2}{5}$
	$\csc \theta=-\frac{\sqrt{29}}{2}$	$\sec \theta=\frac{\sqrt{29}}{5}$	$\cot \theta=-\frac{5}{2}$
$\begin{aligned} & \text { 19. }(-5,12) \\ & 5^{2}+12^{2}=r^{2} \\ & 25+144=r^{2} \\ & 169=r^{2} \\ & 13=r \\ & x=-5 \\ & y=12 \\ & r=13 \end{aligned}$		$\sin \theta=\frac{12}{13}$	$\csc \theta=\frac{13}{12}$
		$\cos \theta=\frac{-5}{13}$	$\sec \theta=-\frac{13}{5}$
		$\tan \theta=-\frac{12}{5}$	$\cot \theta=\frac{-5}{12}$
$\begin{aligned} & \text { 20. }(2,8) \\ & 2^{2}+8^{2}=r^{2} \\ & 4+64=r^{2} \\ & 68=r^{2} \\ & 2 \sqrt{17}=r \end{aligned}$	$f(2,8)$	$\sin \theta=\frac{8}{2 \sqrt{17}}=\frac{4 \sqrt{17}}{17}$	$\csc \theta=\frac{2 \sqrt{17}}{8}=\frac{\sqrt{17}}{4}$
	$\int_{2}^{i^{8}} x$	$\cos \theta=\frac{2}{2 \sqrt{17}}=\frac{\sqrt{17}}{17}$	$\sec \theta=\frac{2 \sqrt{17}}{2}=\sqrt{17}$
$\begin{aligned} & x=2 \\ & y=8 \\ & y=2 \sqrt{17} \end{aligned}$	\downarrow	$\tan \theta=\frac{8}{2}=4$	$\cot \theta=\frac{2}{8}=\frac{1}{4}$

Thursday

Round your answer to the nearest hundredth.

It's important you understand how to build it.

Look for patterns. Make sense of how the values are determined.

Monday

Find the reference angle for each.

Find the reference angle for each.

Find the reference angle for each.

Find a coterminal angle between 0° and 360°. Not multiple choice, find a cot. angle for each.
a.) -330°
b.) 640°
c.) -435°

Find a coterminal angle between 0° and 360°. Not multiple choice, find a cot. angle for each.
a.) -442°
b.) 285°
c.) -545°

Find a coterminal angle between 0 and 2π. Not multiple choice, find a cot. angle for each.
a.) $\frac{11 \pi}{3}$
b.) $\frac{15 \pi}{4}$
C.) $-\frac{19 \pi}{12}$
d.) $-\frac{35 \pi}{18}$

Convert the angle $\theta=\frac{8 \pi}{9}$ radians to degrees. Express your answer exactly.

Convert the angle $\theta=-\frac{19 \pi}{5}$ radians to degrees. Express your answer exactly.

Convert the angle $\theta=-310^{\circ}$ to radians. Express your answer exactly.

Convert the angle $\theta=\frac{17 \pi}{18}$ radians to degrees. Express your answer exactly.

Convert the angle $\theta=\frac{257 \pi}{360}$ radians to degrees. Express your answer exactly.

Convert the angle $\theta=-35^{\circ}$ to radians. Express your answer exactly.

Convert the angle $\theta=100^{\circ}$ to radians. Express your answer exactly.

Student Name:

Teacher Name: De La Mora
Class Name/Subject: Algebra 2
Period:
Assignment Week \#: 2

Wednesday

Complete all work on a separate sheet of paper. Show all work. Include the heading provided on each
worksheet you turn in.
Thursday/Friday
$P(5,-2)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

$P(3,2)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

$P(-1,-1)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

$P(-3,6)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

$P(-3,-2)$ is a point on the terminal side of θ in standard form. Find the exact values of the trigonometric functions of θ :

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

The unit circle -

A circle whose center is at $(0,0)$ and whose radius is 1 Any point on the circumference of the circle can be described by an ordered pair (x, y). The coordinates of
B are $(0.6,0.8)$

1.) What are the coordinates of C, D, and E ?
$C=$ \qquad ,

D = \qquad ,
$\mathrm{E}=$ \qquad .
2.) In which quadrant are both x and y positive?
3.) In which quadrant is x negative and y positive?
4.) In which quadrant is x positive and y negative?
5.) In which quadrant is x negative and y negative?

Draw an angle of 30° in standard position on the unit circle (see above). Mark the initial ray and the terminal ray, Label it Q. Label the point where the terminal ray meets the circumference as θ.
1.) What are the coordinates of θ ?

Drop a perpendicular from Q to the x-axis to construct a right-angled triangle, centered at (0,0).
2.) What is the length of the hypotenuse?
3.) What is the length of the opposite?
4.) What is the length of the adjacent?

Using trigonometric ratios, (not a calculator), calculate the $\sin 30^{\circ}, \cos 30^{\circ}$ and the tan 30°.
5.) $\sin 30^{\circ}=$ \qquad
6.) $\cos 30^{\circ}=$ \qquad
7.) $\tan 30^{\circ}=$ \qquad
Compare these with the values of the x and y coordinates of Q.
8.) What do you notice about the x and y coordinates of Q and the trigonometric functions $\sin 30^{\circ}, \cos 30^{\circ}$ and tan 30° ?

