Teacher De La Mora Subject Algebra Support Dates 5/11-5/15 (Week 4) 7-12 Weekly Planner Welcome to our Distance Learning Classroom!

Student Time Expectation per day: 30 minutes

Content Area & Materials	Learning Objectives	Tasks	po		• •	Submission of Work for Grades
Digital (If you can work digitally, please do. It will help to keep us all safe (3)) • Khan Academy (KA) Access Code Period 1: 9EWGP5FX Period 2: KGZG4TPE	Suggested Order / Pac Review Intro to Square Roo (Monday) Square Root of De (Tuesday) Intro to Cube Root (Wednesday) Simplifying Square (Thursday) Simplifying Square Variables (Friday)	completions assigned Acaden assignments Roots	te the d Khan ny	during the times indicated with the times indi	Mora is available office hours at the ated below. 00 am-12:00 pm anday-Friday anind App DE: dk4g79 alamora@tusd.net	KA / EP assignments will be recorded with the highest scores attained
Hard Copy (Please only use this if you do not have technology available) Notes + Examples Assignments	Suggested Order / Pac Review Intro to Square Roo (Monday) Square Root of De (Tuesday) Intro to Cube Root (Wednesday) Simplifying Square (Thursday) Simplifying Square Variables (Friday)	the lesson example of paper assignm completing problem.	es provided carate sheet r for each ent, te ALL as showing	during the times indicated with the times indi	nind App DE: dk4g79 elamora@tusd.net	Group your work together for your math class IN ORDER, and with the following labels clearly displayed: Student Name: Teacher Name: Class Name/Subject: Period: Assignment Week # Assignments will be scored on accuracy.
Scheduled, if possible,Discussion	Zoom classes can be h kimballmath.wordpress Discussions will revolve	s.com around discovery and	application of	_		
Scaffolds & Supports	KA assignments can often be re-tried to improve learning. Videos are utilized to demonstrate not only key concepts, but also frequent points of errors, helping students avoid pitform.				elping students avoid pitfalls.	
Teacher Office Hours 2 hours daily (all classes): Contact Platform	Monday 10:00 am-12:00 pm	Tuesday 10:00 am-12:00 pm	Wedne 10:00 am-1	-	Thursday 10:00 am-12:00 pm	Friday 10:00 am-12:00 pm

Student Name: NOTES: Complete all work on a separate sheet of paper. Teacher Name: De La Mora Class Name/Subject: Include the heading provided on each worksheet you Algebra Support Period: turn in. Show all work. Assignment Week #: 4 The n^{th} root of a number, a, can be written as the radical expression $\sqrt[n]{a}$ Monday Parts of a Radical Vadica *If there is no index, it is assumed that_ If a radical has more than one root, the radical sign indicates only the principal, or positive, root. List the first 12 perfect squares: Perfect Squares 1,4,9,16,25,36,49,64,81,100,121,144 **Tuesday** Break apart the radicands using the the QUOTIENT RULE: $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $\sqrt{1.44} = [$ Dividing **(2**) Look for perfect square radicals and simplify them. Radicals 1/3 $12 \cdot 12 = 144$ (3) Simplify (divide/reduce) the radicands, if possible. Similarly, $1.2 \cdot 1.2 = 1.44$. 2/3 (4) Simplify the resulting radical, along with any coefficients. Directions: Find each quotient. Write your answer in simplest radical form. 3/3 1.2 is the answer. Examples 1/2 $\sqrt[3]{729} = [$ $\sqrt[3]{729}$ is the number that, when multiplied by itself three times, equals 729. Notes are also If you can't think of that number, you can break down 729 into its prime factorization and look in your composition 9 / 14 books. Remember to create a factor tree to help simplify the radicals. The index tells you how many to group. You will take one value 10 / 14 So the prime factorization of 729 is $3 \times 3 \times 3 \times 3 \times 3 \times 3$. out for each group. Then We're looking for $\sqrt[3]{729}$, so we want to split the prime factors into three identical groups. multiply them. Anything not Notice that we can rearrange the factors like so: 12 / 14 grouped must be multiplied $729 = 3\times3\times3\times3\times3\times3 = (3\times3)\times(3\times3)\times(3\times3)$ together. 13/14 So $(3 \times 3)^3 = 9^3 = 729$. 14 / 14 So $\sqrt[3]{729}$ is 9.

Wednesday	Simplifying Non-Perfect Square Roots	Break down to take the square the "lesson of the square the "lesson of take the square the "lesson of take the square the "lesson of take the square the	est perfect square that the radicand the radical using this number. are root of the perfect square. Take in the radical symbol. 6. $\sqrt{180}$ $\sqrt{36} \cdot \sqrt{5}$ 8. $\sqrt{175}$ $\sqrt{25} \cdot \sqrt{7}$ $\sqrt{5}$		
Thursday /	Perfect Cubes ±1,:		irst 10 perfect cubes: 216 ₁ 号43 ₇ ち12 ₇ 529 ,±1000	12x2y	$\sqrt{12x^2}$
Friday	Perfect Cube Roots		16. $5\sqrt[3]{343}$ = 5 · 7 = $\boxed{35}$ 18. $2\sqrt[3]{-1000}$ = $2 \cdot 70$ = $\boxed{-20}$	$= \sqrt{4} \cdot \sqrt{3} \cdot \sqrt{4}$ $= 2 \cdot \sqrt{3} \cdot x \cdot y$ $= 2 \cdot \sqrt{3} \cdot x \cdot y$ $= 2 \cdot \sqrt{3} \cdot x \cdot y$ $y^{4} = 2xy^{3} \sqrt{3}$	$y^4 = \sqrt{4 \cdot 3 \cdot x^2}$
		use the perfect cul 3/40 3 · 3/5 2 3/5	l to simplify square roots, however, bes to break down the radical. 20. ₹192 364 333	2. $\sqrt{y^2}$. $\sqrt{y^2}$ Express as product of individual ray Note: Square root of some square y Requal to the variable itself: Keep to the right all terms inside t	
	SQUARE ROOTS with Variables	_	IPLE OF 2, use the rule $\sqrt{a^m} = \frac{m^{n/2}}{2}$ nultiple of 2, break it apart: $\sqrt{a^m} = \sqrt{a^{m-1} \cdot a}$	duct of Indiv root of some to the variable ght all terms	les with pow
	EXAMPLES 1. \(\sigma\)	√x² = <u>X</u>	$2.\sqrt{9k^{10}} = \boxed{3 \cancel{\texttt{K}}^{5}}$	idual radicals squared vari e liself! Inside the rac	ers of 2
	3. \	<u>[n4</u> .]n	4. √40a ¹⁹ √4a ¹⁸ ·√10a	dicals d variable is he radical	<u> </u>
		$n^2 \sqrt{n}$	2a9 JIDa		
	l '	25x ⁶ y ¹³ 25x ⁶ y ¹² . Vy 5x ³ y ⁶ Vy	6. √ρ ¹⁵ q ⁹ r √ρ' ⁴ q 8 · √ραΓ [ρ ⁷ α ⁴ √ραΓ]		
	Simplify. Remove all perfect squares from inside the square roots. Assume a and b are positive. $\sqrt{81a^5b} = $		You can also simplify by separating the problem into the radical of a constant times the radical of a variable. Then individually simplify each radical.		

Student Name: Teacher Name: De La Mora Class Name/Subject: Algebra Support Period: Assignment Week #: 4	Complete all work on a separate sheet of paper. Show all work. Include the heading provided on each worksheet you turn in.
Monday	Tuesday
1.) Simplify. a.) $\sqrt{16}$ b.) $\sqrt{25}$	1.) Simplify. a.) $\sqrt{\frac{9}{100}}$ b.) $\sqrt{\frac{49}{81}}$
 2.) Simplify. a.) √36 b.) √81 	2.) Simplify. a.) $\sqrt{\frac{64}{121}}$ b.) $\sqrt{\frac{36}{169}}$
 3.) Simplify. a.) √144 b.) √121 	3.) Simplify. a.) $\sqrt{1.69}$ b.) $\sqrt{0.64}$
4.) Simplify. a.) $\sqrt{100}$ b.) $\sqrt{49}$	 4.) Simplify. a.) √3.24 b.) √4.48
5.) Simplify. a.) $\sqrt{1}$ b.) $\sqrt{9}$	5.) Simplify. a.) $\sqrt{\frac{25}{196}}$ b.) $\sqrt{\frac{100}{9}}$
 6.) Simplify. a.) √169 a.) √225 	6.) Simplify. a.) $\sqrt{30b^5}$ b.) $\sqrt{52x^4}$

Student Name: Teacher Name: De La Mora Class Name/Subject: Algebra Support Period: Assignment Week #: 4	Complete all work on a separate sheet of paper. Show all work. Include the heading provided on each worksheet you turn in.
Wednesday/Thursday	Thursday/Friday
1.) Simplify. a.) √54	Simplify. Multiply and remove all perfect squares from inside the square roots.
b.) √ 27	$\sqrt{12} \cdot \sqrt{y^3} \cdot \sqrt{6y}$
2.) Simplify. a.) $\sqrt{80}$	Simplify. Multiply and remove all perfect squares from inside the square roots.
b.) $\sqrt{200}$	$\sqrt{2a} \cdot \sqrt{14a^3} \cdot \sqrt{5a}$
 3.) Simplify. a.) √72 	3.) Simplify. Remove all perfect squares from inside the square roots.
b.)√108	$\sqrt{8x^3y^2}$
4.) Simplify. a.) √69	4.) Simplify. Remove all perfect squares from inside the square roots.
b.) $\sqrt{121a^6}$	$\sqrt{42a^4b^6}$
5.) Simplify. a.) $\sqrt{56z^7}$	5.) Simplify. Remove all perfect squares from inside the square roots.
b.) $\sqrt{112a^6}$	$\sqrt{72x^3z^3}$
6.) Simplify. a.) $\sqrt{30b^5}$	6.) Simplify. Remove all perfect squares from inside the square roots.
b.) √52 <i>x</i> ⁴	$\sqrt{81a^5b}$