

Student Name:
Teacher Name: De La Mora Class Name/Subject:
Algebra Support
Period:
Assignment Week \#: 4

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Parts of a Radical	The $n^{\text {th }}$ root of a number, a, can be witten as the radical expression $\sqrt[n]{a}$ index
	If there is no index, it is assumed that $n=2$

Tuesday

Wednesday		erfect square that the radicand is divisible by. adical using this number. oot of the perfect square. Take it out of the radical. r " under the radical symbol.
Thursday / Friday		perfect cubes: $=343, \pm 512,-729, \pm 1000$ 16. $5 \sqrt[3]{343}=5 \cdot 7=35$ 18. $2 \sqrt[3]{-1000}=2 \cdot-10=-20$ mplify square roots, however, break down the radical. 20. $\sqrt[3]{192}$ $\sqrt[3]{64} \cdot \sqrt[3]{3}$ $4 \sqrt[3]{3}$ F 2, use the rule $\sqrt{a^{m}}=a^{m / 2}$ e 2, break it apart: $\sqrt{a^{m}}=\sqrt{a^{m-1} \cdot a}$ 2. $\sqrt{9 k^{10}}=\sqrt{3 k^{5}}$ 4. $\sqrt{40 a^{19}}$ $\sqrt{4 a^{18}} \cdot \sqrt{10 a}$ $2 a^{9} \sqrt{10 a}$ 6. $\sqrt{p^{15} q^{9} r}$ $\sqrt{p^{14} q^{8}} \cdot \sqrt{p q r}$ $p^{7} q^{4} \sqrt{p q r}$ You can also simplify by separating the problem into the radical of a constant times the radical of a variable. Then individually simplify each radical.

Student Name: Teacher Name: De La Mora Class Name/Subject: Algebra Support Period: Assignment Week \#: 4	Complete all work on a separate sheet of paper. Show all work. Include the heading provided on each worksheet you turn in.
Monday	Tuesday
1.) Simplify. a.) $\sqrt{16}$ b.) $\sqrt{25}$	1.) Simplify. a.) $\sqrt{\frac{9}{100}}$ b.) $\sqrt{\frac{49}{81}}$
2.) Simplify. a.) $\sqrt{36}$ b.) $\sqrt{81}$	2.) Simplify. a.) $\sqrt{\frac{64}{121}}$ b.) $\sqrt{\frac{36}{169}}$
3.) Simplify. a.) $\sqrt{144}$ b.) $\sqrt{121}$	3.) Simplify. a.) $\sqrt{1.69}$ b.) $\sqrt{0.64}$
4.) Simplify. a.) $\sqrt{100}$ b.) $\sqrt{49}$	4.) Simplify. a.) $\sqrt{3.24}$ b.) $\sqrt{4.48}$
5.) Simplify. a.) $\sqrt{1}$ b.) $\sqrt{9}$	5.) Simplify. a.) $\sqrt{\frac{25}{196}}$ b.) $\sqrt{\frac{100}{9}}$
6.) Simplify. a.) $\sqrt{169}$ a.) $\sqrt{225}$	6.) Simplify. a.) $\sqrt{30 b^{5}}$ b.) $\sqrt{52 x^{4}}$

Student Name:
Teacher Name: De La Mora
Class Name/Subject: Algebra Support
Period:
Assignment Week \#: 4

Complete all work on a separate sheet of paper. Show all work. Include the heading provided on each worksheet you turn in.

Thursday/Friday
1.) Simplify.
a.) $\sqrt{54}$
b.) $\sqrt{27}$
2.) Simplify.
a.) $\sqrt{80}$
b.) $\sqrt{200}$
3.) Simplify.
a.) $\sqrt{72}$
b.) $\sqrt{108}$
4.) Simplify.
a.) $\sqrt{69}$
b.) $\sqrt{121 a^{6}}$
5.) Simplify.
a.) $\sqrt{56 z^{7}}$
b.) $\sqrt{112 a^{6}}$
6.) Simplify.
a.) $\sqrt{30 b^{5}}$
b.) $\sqrt{52 x^{4}}$
1.) Simplify. Multiply and remove all perfect squares from inside the square roots.

$$
\sqrt{12} \cdot \sqrt{y^{3}} \cdot \sqrt{6 y}
$$

2.) Simplify. Multiply and remove all perfect squares from inside the square roots.

$$
\sqrt{2 a} \cdot \sqrt{14 a^{3}} \cdot \sqrt{5 a}
$$

3.) Simplify. Remove all perfect squares from inside the square roots.

$$
\sqrt{8 x^{3} y^{2}}
$$

4.) Simplify. Remove all perfect squares from inside the square roots.

$$
\sqrt{42 a^{4} b^{6}}
$$

5.) Simplify. Remove all perfect squares from inside the square roots.

$$
\sqrt{72 x^{3} z^{3}}
$$

6.) Simplify. Remove all perfect squares from inside the square roots.

$$
\sqrt{81 a^{5} b}
$$

