

Student Name:

Teacher:
Subject: Algebra 2
Period:
Assignment
Week\#: 4

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Graphing Sine and Cosine
 Table of Values going all the way around the Unit circle:

Because the value of r is 1 for each point $P(x, y)$ on the unit circle, the trig functions for θ are defined as:
$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}=\frac{o p p}{h y p}=\frac{y}{1}=\boldsymbol{y}$
$\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\frac{\text { adj }}{\text { hyp }}=\frac{x}{1}=\boldsymbol{x}$
$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}=\frac{o p p}{a d j}=\frac{\boldsymbol{y}}{\boldsymbol{x}}$
Our parent functions begin with the UNIT Circle.

If you are working from the UNIT circle, then you can graph trig functions using the corresponding coordinates.
θ and $\sin \theta \rightarrow(\theta, y)$
θ and $\cos \theta \rightarrow(\theta, x)$
θ and $\tan \theta \rightarrow\left(\theta, \frac{y}{x}\right)$

$\boldsymbol{\theta}$ degrees	$\mathbf{0}$	30	45	60	$\mathbf{9 0}$	120	135	150	$\mathbf{1 8 0}$	210	225	240	$\mathbf{2 7 0}$	300	315	330	$\mathbf{3 6 0}$
$\boldsymbol{\theta}$	$\mathbf{0}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\boldsymbol{\pi}}{\mathbf{2}}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	$\boldsymbol{\pi}$	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{\mathbf{3 \pi}}{\mathbf{2}}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$	$\mathbf{2 \pi}$
radians	X	$\mathbf{1}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\mathbf{0}$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$\mathbf{- 1}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$\mathbf{0}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\mathbf{0}$																	
y	$\mathbf{0}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\mathbf{1}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\mathbf{0}$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$-\mathbf{1}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$\mathbf{1}$

$$
\overline{0.0}
$$

$f(\theta)=\operatorname{Sin} \theta \rightarrow$ in Degrees \rightarrow

$f(\theta)=\operatorname{Sin} \theta \rightarrow$ in Radians $\rightarrow(\theta, y)$

Orad	y
0	0
$\frac{\pi}{2}$	1
π	0
$\frac{3 \pi}{2}$	-1
2π	0

STEPS for GRAPHING Parent Trig Functions
1.Identify Function
\square Sin
-Cos
-Tan
2.Identify Axis and scale \& if degrees OR radians
$\square \operatorname{Sin} \rightarrow(\theta, y)$ $\square \operatorname{Cos} \rightarrow(\theta, x)$ $\square T a n \rightarrow$
$\left(\theta, \frac{y}{x}\right)$
3. Use "Friendly"

Angles $0,90,180$, 270, 360) to scale the horizontal axis.
3. Extend the
horizontal axis forward and backward
(rotations go forever forward and/or back)
3. Connect...NO sharp points, curves only.
$f(x)=\operatorname{Cos} \theta \rightarrow$ in Degrees $\rightarrow(\theta, x)$

θ°	y
0	1
90	0
180	-1
270	0
360	1

$f(x)=\operatorname{Cos} \theta \rightarrow$ in Radians $\rightarrow(\theta, x)$

Student Name:
Teacher:
Subject: Algebra 2
Period:
Assignment Week\#: 4

NOTES: Complete all work on a separate sheet of paper. Include the heading provided on each worksheet you turn in. Show all work.

Graphing Tangent
Table of Values going all the way around the Unit circle:

| $\boldsymbol{\theta}$
 degrees | $\mathbf{0}$ | 30 | 45 | 60 | $\mathbf{9 0}$ | 120 | 135 | 150 | $\mathbf{1 8 0}$ | 210 | 225 | 240 | $\mathbf{2 7 0}$ | 300 | 315 | 330 | $\mathbf{3 6 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{\theta}$
 radians | $\mathbf{0}$ | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\boldsymbol{\pi}}{3}$ | $\frac{\boldsymbol{\pi}}{\mathbf{2}}$ | $\frac{2 \pi}{3}$ | $\frac{3 \pi}{4}$ | $\frac{5 \pi}{6}$ | $\boldsymbol{\pi}$ | $\frac{7 \pi}{6}$ | $\frac{5 \pi}{4}$ | $\frac{4 \pi}{3}$ | $\frac{\mathbf{3 \pi}}{\mathbf{2}}$ | $\frac{5 \pi}{3}$ | $\frac{7 \pi}{4}$ | $\frac{11 \pi}{6}$ | $\mathbf{2} \boldsymbol{\pi}$ |
| X | $\mathbf{1}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | $\mathbf{0}$ | $-\frac{1}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | $\mathbf{- 1}$ | $-\frac{\sqrt{3}}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{1}{2}$ | $\mathbf{0}$ | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | $\mathbf{0}$ |
| y | $\mathbf{0}$ | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | $\mathbf{1}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | $\mathbf{0}$ | $-\frac{1}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | $-\mathbf{1}$ | $-\frac{\sqrt{3}}{2}$ | $-\frac{\sqrt{2}}{2}$ | $-\frac{1}{2}$ | $\mathbf{1}$ |

$f(\theta)=\operatorname{Tan} \theta \rightarrow$ in Degrees $\rightarrow(\theta, y / x)$

$f(\theta)=\operatorname{Tan} \theta \rightarrow$ in Radians $\rightarrow(\theta, y / x)$

Orad	y / x
0	0
$\frac{\pi}{2}$	undef
π	0
$\frac{3 \pi}{2}$	undef
2π	0

Key Features of Periodic Functions	Definitions: - Periodic functions are functions that repeat - Trigonometric functions are periodic! - Period: the length of a cycle. Periods can start at any point on the graph. - Amplitude: Half the distance between the Phase Shift: \boldsymbol{h}, but make - Phase Shift: Horizontal shifts. Be careful sure the b value is here, the \mathbf{b}-value MUST be factored ou to find the phase shift represented by factored out. the h-value. Midline: \boldsymbol{k} Midline: The reference line to which a graph oscillates. The midline is epresented by the \mathbf{k}-value							
Steps for graphing a Sinusoidal Function of the form $\begin{aligned} & g(x)=a \sin (b(x-h))+k \\ & g(x)=a \cos (b(x-h))+k \end{aligned}$	1. Identify if measurements are in degrees or radians. 2. Identify transformation and k. make sure the b-value is factored out. 3. Start with parent function reference points . Apply Transformations To scale horizontal axis, it is often easiest to make fractions with common denom.	Applying $g(x)=2$ 30 30 0 $\frac{3 \pi}{2}$ 3π $\frac{9 \pi}{2}$ 6π		mplitude	20	$\frac{-1}{-1}$		$\frac{3 \pi}{3 \pi}+\cdots$

Do all work by HAND In Degrees

- Complete the table for the parent function
- Scale your axis
- Graph the sinusoidal, continuing throughout the extent of the coordinate plane

How would you extend the graphs of these functions?

Why can they be
extended?

In Radians

$f(x)=\cos x$

In Radians
$f(x)=\tan x$
Why are there undefined values for some of the tangents?

On the graph below, diagram ONE period, and the Amplitude. Then give the appropriate measurements.

Identify the amplitude and period of each function.
$\mathrm{f}(\mathrm{x})=\frac{1}{2} \sin (4 x)$
Amplitude:
Period:
Amplitude:

Period

Wednesday \& Thursday

Do all work by HAND

in radians
$f(x)=4 \sin x-3$

in degrees
$f(x)=-\sin x+3$

in radians
$f(x)=\frac{1}{2} \sin x-1$

Amplitude
Phase Shift

in degrees
$f(x)=-2 \sin x+2$

Amplitude
Phase Shift

* Complete a table for the transformed function

Scale your axis

Period
Midline

Graph the sinusoidal, continuing throughout the extent of the coordinate plane.
in degrees
$f(x)=\frac{1}{2} \cos x+2$

Amplitude	Period
Phase Shift	Midline

in radians
$f(x)=3 \cos x+1$

Amplitude
Phase Shift

in degrees
$f(x)=-\frac{1}{2} \cos x-2$

Amplitude	Period
Phase Shift	Midline

in radians
$f(x)=-\cos x-3$

Amplitude	Period
Phase Shift	Midline

